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Plethysm for the non-compact groupSp(2n, R) and new
S-function identities

K Grudzinski† and B G Wybourne‡
Instytut Fizyki, Uniwersytet Miko laja Kopernika, ul. Grudzi¸adzka 5/7, 87-100 Torún, Poland

Received 16 April 1996, in final form 12 June 1996

Abstract. Methods of computing plethysms of the fundamental unitary irreducible
representations of the non-compact symplectic groupSp(2n, R) are considered. Complete
results are given for the symmetrized second powers. A number of newS-function identities are
reported. The stability properties of theSp(2n, R) plethysms are noted as well as a remarkable
conjugacy relation. The application of the plethysms toN -particles in an isotropic harmonic
oscillator is briefly outlined.

1. Introduction

The symplectic groupSp(6, R) is well known as the dynamical group of the isotropic three-
dimensional harmonic oscillator [1]. For a single particle the even-parity states span a single
infinite-dimensional irrep commonly denoted [2, 3] as〈 1

2(0)〉 while the odd-parity states
span the irrep〈 1

2(1)〉 of Sp(6, R). Collectively they span a single irrep̃1 of the metaplectic
groupMp(6), the covering group ofSp(6, R). These groups find significant applications in
many-body symplectic models of nuclei [4] and in the mesoscopic properties of quantum
dots [5, 6]. A central problem in making applications is the resolution of Kronecker powers
of the fundamental irreps ofSp(6, R) into their various symmetry types. Basic methods are
known [7–9] for computing such resolutions for the powers of the reducible representation
〈 1

2(0)〉 + 〈 1
2(1)〉. However, it is desirable to also resolve separately the Kronecker powers

of the two fundamental irreps ofSp(6, R) and it this problem we address herein.
Such problems fall in the domain of plethysms [7–11]. We present a method of

systematically evaluating plethysms for the fundamental irreps of the groupSp(6, R).
In principal the same method applies for allSp(2n, R). The Kronecker squares of the
fundamental irreps for allSp(2n, R) are fully resolved which in turn leads to a number
of new S-function identities as well as a new insight into two-particle states. Explicit
calculation of the fourth powers leads to a surprising result that implies a remarkableS-
function identity for certain infinite series ofS-functions.

We illustrate the application of the method by a brief discussion of the two- and three-
particle states in the symplectic model.
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E-mail address: kagru@MPA-Garching.MPG.DE
‡ E-mail address: bgw@phys.uni.torun.pl
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2. The Sp(2n, R) → U (n) reduction

The general problem of theSp(2n, R) → U(n) reduction has been studied in some detail
[2, 3]. Under that restriction the two fundamental irreps ofSp(2n, R) decompose as [2, 3]

〈 1
2(0)〉 → ε

1
2 ({0} + {2} + {4} + . . .) = ε

1
2 M+ (1)

〈 1
2(1)〉 → ε

1
2 ({1} + {3} + {5} + . . .) = ε

1
2 M− (2)

whereM+ andM− are respectively theevenandodd terms of the infiniteS-function series
indexed by the one part partitions(m) with m = 0, 1, . . . ,∞.

In general〈
k

2
(λ)

〉
→ ε

k
2 · {{λs}kN · DN }N (3)

where N = min(n, k), {λs}k is a signed sequence[2] of terms ±{ρ} such that±[ρ] is
equivalent to [λ] under the modification rules [12–14] of the groupO(k), DN is the infinite
S-function series indexed by even partitions into not more thanN parts. The first· indicates
a product inU(n) and the second· a product inU(N) as implied by the final subscriptN .
Specific examples may be found elsewhere [2, 3].

Clearly, (1)–(3) will involve an infinite series of irreps ofU(N) and any practical
calculations must be truncated at some bound. Such calculations can be readily made
using the program SCHUR [15]. The irreps〈 k

2(λ)〉 of Sp(2n, R) are constrained by the
requirement that the conjugate partition(λ̃) = (λ̃1, λ̃2, . . .) satisfy the constraints

λ̃1 + λ̃2 6 k (4a)

λ̃1 6 n. (4b)

The value of 1
2k may be an integer or half-odd integer. In that respect it is useful to

introduce the equivalent notation

〈sκ; (λ)〉 ≡
〈
k

2
(λ)

〉
(5)

where
k

2
= s + κ (6)

with κ being the integer part ofk2 and the residue part iss = 0 or 1
2. Thus the two

fundamental irreps will henceforth be designated as〈s; (0)〉 and〈s; (1)〉.
It is critical to our analysis to note that under the reductionSp(2n, R) → U(n) the

lowest weightU(n) irrep appearing in the decomposition is the irrep{λ}.

3. Evaluation of plethysms forSp(2n, R)

The evaluation of plethysms of the type(〈s; (0)〉 + 〈s; (1)〉) ⊗ {ν} has been discussed
elsewhere [8, 9] using the group chain

Sp(2nk, R) ⊃ Sp(2n, R) × O(k) ⊃ Sp(2n, R) × S(k) (7)

with the O(k) → S(k) decomposition playing a key role. Plethysms inSp(2n, R) of the
type 〈

k

2
(λ)

〉
⊗ {ν} =

∑
τ

cτ
ν

〈
`

2
(τ )

〉
(8)
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with

` = k × |ν| (9)

require a different approach.
Here we proceed by first doing the branchingSp(2n, R) → U(n) to give〈

k

2
(λ)

〉
→

∑
ρ

c
ρ
λ{ρ} (10)

where the coefficientscρ
λ are non-negative integers. The sum is infinite with the lowest

weight irrep ofU(n) being{λ} with

cλ
λ = 1 (11)

The next step is to evaluate the plethysms inU(n) to some user chosen cutoff. This
gives a list ofU(n) irreps which may be ordered in increasing weight starting with the lowest
{ρm}. This observation implies that theSp(2n, R) irrep 〈 `

2(ρm)〉 occurs in theSp(2n, R)

plethysm. Thus we may remove from the list ofU(n) irreps all those derived from that
Sp(2n, R) irrep. The lowest weight irrep of the residueU(n) is identified and theU(n)

content of the nextSp(2n, R) irrep removed. This process is continued up to the chosen
cut-off.

The above process may be illustrated by calculating the plethysm〈 3
2(21)〉 ⊗ {2} up to

terms of maximum weight 10. We first compute theSp(6, R) → U(3) branching rule
keeping all terms of weight6 10 to obtain

〈 3
2(21)〉 → {81} +{72} +{712} +{63} +{621} +{61}

+{54} +2{531} +{52} +{512} +{432} +{43}
+{421} +{41} +{321} +{32} +{312} +{21}.

We now compute the plethysm at theU(3) level again keeping all terms of weight6 10 to
give the following list ofU(3) irreps

2{82} +{812} +3{73} +7{721} +5{64} +11{631}
+9{622} +{62} +{612} +{52} +10{541} +11{532}
+2{53} +4{521} +8{422} +{42} +4{432} +4{431}
+3{422} +{42} +2{322} +{321} +{23}.

There are three irreps of weight 6 in the above list ({42}, {321}, {23} allowing us to
immediately conclude that theSp(6, R) irreps 〈3(42)〉, 〈3(321)〉, 〈3(23)〉 must occur in the
plethysm. These three irreps may be branched toU(3) and the resultingU(3) irreps of
weight 6 10 removed from the list to leave theU(3) residue

{82} +{812} +2{73} +5{721} +3{64} +8{631}
+5{622} +{612} +{52} +7{541} +7{532} +{53}
+2{521} +4{422} +3{432} +2{431} +{322}.

Inspection of the above list shows that there are seven irreps of weight 8 and hence seven
moreSp(6, R) irreps. Continuing we readily find〈 3

2(21)〉 ⊗ {2} contains, to weight 10, the
Sp(6, R) irreps

〈3; (82)〉 +〈3; (73)〉 +2〈3; (721)〉 +2〈3; (64)〉 +2〈3; (631)〉
+3〈3; (622)〉 +〈3; (612)〉 +2〈3; (541)〉 +〈3; (532)〉 +〈3; (53)〉
+2〈3; (521)〉 +2〈3; (422)〉 +2〈3; (431)〉 +〈3; (42)〉 +〈3; (322)〉
+〈3; (321)〉 +〈3; (23)〉.

The plethysms of the irreps〈s; (0)〉 and 〈s; (1)〉 are of particular interest in physics
applications. The resolution of their Kronecker squares is straightforward. The terms,



6634 K Grudzinski and B G Wybourne

to weight 16, for plethysms for up to power 4 are relevant to the description of the
states of two to four particles in an isotropic three-dimensional harmonic oscillator
and have been evaluated. The tabulated results are available at the WEB site
http://www.phys.uni.torun.pl/∼bgw/.

4. The Kronecker square of the fundamental irreps

Inspection of the symmetrized powers of the irreps〈s; (0)〉 and 〈s; (1)〉 reveals a number
of surprising features. It would appear that

〈s; (0)〉 ⊗ {2} =
∞∑
i=0

〈1; (0 + 4i)〉 (12)

〈s; (0)〉 ⊗ {12} =
∞∑
i=0

〈1; (2 + 4i)〉 (13)

〈s; (1)〉 ⊗ {2} =
∞∑
i=0

〈1; (2 + 4i)〉 (14)

〈s; (1)〉 ⊗ {12} = 〈1; (12)〉 +
∞∑
i=0

〈1; (4 + 4i)〉 (15)

holds for allSp(2n, R) with n > 2. For n = 1 the irrep〈1; (12)〉 in (15) must be deleted.
The correctness of (12)–(15) may be verified by first noting that the Kronecker squares of
the fundamental irreps aren-independent forn > 2 and then usingS-function identities for
the infinite series.

Remarkably, the irrep content in (13) and (14) are identical and hence

〈s; (0) > ⊗{12} ≡ 〈s; (1)〉 ⊗ {2} (16)

which in turn implies a number of hitherto unnoticed identities for plethysms. Even more
remarkable is the observation that suggests the conjectured equivalence that

〈s; (0)〉 ⊗ {212} ≡ 〈s; (1)〉 ⊗ {31}. (17)

The equality is evidentlyn-independent forn > 3. Such an equivalence would only be
possible if both plethysms underSp(2n, R) → U(n) yielded the same set ofU(n) irreps.
But this would again require a remarkableS-function plethysm identity.

5. Plethysm identities for infinite series ofS-functions

The equivalence observed in (16) implies that

M+ ⊗ {12} ≡ M− ⊗ {2}. (18)

Such an equivalence may be readily proved using the properties of the infinite series of
S-functions defined elsewhere [7, 16]. The proof follows by first noting that

2M± = M ± P (19)

where

M =
∞∑

m=0

and P =
∞∑

m=0

(20)
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and that

M2
+ − M2

− = MP = W. (21)

Then

(2M+) ⊗ {12} = 2(M+ ⊗ {12}) + M2
+ = (M + P) ⊗ {12} (22)

leading to

2(M+ ⊗ {12}) = (M + P) ⊗ {12} − M2
+ (23a)

2(M− ⊗ {2}) = (M − P) ⊗ {2} − M2
− (23b)

Thus (18) will be valid if

(M + P) ⊗ {12} − (M − P) ⊗ {2} = M2
+ − M2

− = W. (24)

Expanding the left-hand side we obtain

M ⊗ ({12} − {2}) + 2W = −M ⊗ p2 + 2W = W (25)

which establishes the conjectured equality. From the equality it follows that

M ⊗ {2} = MM+ and M ⊗ {12} = MM−. (26)

In precisely the same manner one finds

L + ⊗{12} ≡ L− ⊗ {2} (27)

whereL+ andL− are respectively the positive and negative terms of the series

L =
∞∑

m=0

(−1)m{1m}. (28)

Still further identities arise for the infiniteS-function series defined by

A± = {12} ⊗ L± B± = {12} ⊗ M± C± = {2} ⊗ L± D± = {2} ⊗ M±. (29)

Use of the associativity property of plethysms [10] leads directly to

Z+ ⊗ {12} ≡ Z− ⊗ {2} (30)

for Z = A, B, C, D. Furthermore,

Z ⊗ {2} = ZZ+ and Z ⊗ {12} = ZZ−. (31)

Now to the remarkable equation (17). This plethysm implies that

M+ ⊗ {212} ≡ M− ⊗ {31}. (32)

Three independent proofs of this identity have been established. The author first, rather
tediously, constructed a proof similar to that given for (18), next Thibon [17] gave a simple
proof based upon a power sum expansion of both sides of (32), finally King [18] used the
associativity property of plethysms to give

M+ ⊗ {212} = M+ ⊗ ({12} ⊗ {12})
= (M+ ⊗ {12}) ⊗ {12} = (M− ⊗ {2}) ⊗ {12}
= M− ⊗ ({2} ⊗ {12}) = M− ⊗ {31} (33)

where use has been made of the fact that{12} ⊗ {12} = {212} and{2} ⊗ {12} = {31}. King
further notes the generalization

M+ ⊗ ({12} ⊗ {σ }) = M− ⊗ ({2} ⊗ {σ }). (34)

Again the identities in (33) and (34) can be extended to the series given in (29). King’s
generalization, (34), can give a useful check on computations ofSp(2n, R) plethysms. For
example, choosing{σ } ≡ {2} gives the identity

M+ ⊗ ({22} + {14}) = M− ⊗ ({22} + {4}). (35)
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6. StableSp(2n, R) plethysms

A given plethysm, Kronecker product or decomposition will be said to bestable if at the
stable value ofn = ns there is a one-to-one mapping between the resultant list of irreps
obtained at the stable valuens and those obtained for all values ofn > ns . Equations (1)
and (2) are examples of stable decompositions underSp(2n, R) → U(n) with a stable value
of ns = 2. Likewise the decomposition in (3) is stable for all values ofn > k.

It follows from King and Wybourne [3] (8.18) that theSp(2n, R) Kronecker product〈
k

2
(λ)

〉
×

〈
`

2
(ν)

〉
=

〈
(k + `)

2
(({λs}k · {νs}` · D))k+`,n

〉
(36)

is certainly stable for alln > (k + `). We saycertainly because in certain casespremature
stability may occur for values ofn < (k + `). At this point note that all theS-functions in
(36) must satisfy, at every stage in the calculation, the constraints of (4a) and (4b). This
restricts terms in the infiniteD series ofS-functions to those members of the series of
length `(δ) 6 (k+`)

2 . Similar restrictions apply to the signed sequences appearing in (36).
As a trivial example consider

〈1; (0)〉〈1; (0)〉 = 〈2; (({0s}2 · {0s}2 · D))4,n〉.
We anticipate stabilization atn = 4 but

{0s}2 = {0} − {23}.
However,{23} cannot satisfy the constraints of (8.19) forn 6 4 and should be discarded.
Furthermore only the terms of the D series of length 2 can satisfy (4a) and (4b) and hence
the product stabilizes atn = 2.

One observes that the third-order plethysms for the two fundamental irreps stabilize
at n = 3. This is consistent with the stabilization of the products〈s; (0)〉〈1; (µ)〉 and
〈s; (1)〉〈1; (µ)〉 at n = 3 and for similar reasons stabilization of theN th order plethysms
must occur atn = N as observed. Again premature stabilization for individual plethysms
may occur forn < N . Thus for N = 3 all the plethysms stabilize atn = 2 except for
〈s; (1)〉 ⊗ {13} which stabilizes atn = 3. Stabilization for arbitraryN occurs atn = N − 1
except for〈s; (1)〉 ⊗ {1N } which stabilizes atn = N .

7. Conjugacy mappings

Inspection of tables for the plethyms〈s; (0)〉⊗{λ} and〈s; (1)〉⊗{λ̃} whereλ̃ is the conjugate
of λ suggests that the two plethysms are remarkably related by one-to-one mappings such
that if

〈s; (0)〉 ⊗ {λ} =
∑

µ

gµ〈k; (µ)〉 (37)

where k = |λ|/2 and gµ is the multiplicity, then the termsgµ〈k; (µ)〉 in 〈s; (1)〉 ⊗ {λ̃}
are identical to those in (37) apart from those that are related by the following simple(µ)

one-to-one mappings

λ ` 2 (0) → (12)

λ ` 3 (0) → (13) (a) → (a1) (a1) → (a)

λ ` 4 (0) → (14) (a) → (a12) (a12) → (a)

λ ` 5 (0) → (15) (a) → (a13) (a13) → (a) (ab) → (ab1) (ab1) → (ab)

λ ` 6 (0) → (16) (a) → (a14) (a14) → (a) (ab) → (ab12) (ab12) → (ab).

(38)
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That such simple relationships seem to exist is by no means evident from the methods used
to establish the plethysms and hints at an underlying simplicity that remains to be discovered
and a conjugacy theorem still to be exposed.

8. Two-particle states

The plethysm equivalence noted in (16) has consequences for the case of the states of two
non-interacting fermions in an isotropic three-dimensional harmonic oscillator potential.
It means that for the even-parity two-particle states there is a one-to-one correspondence
between the spin triplet states formed by two-particles in even-parity orbitals with the spin
singlet states formed by two particles in odd-parity orbitals, a feature of the much studied
isotropic three-dimensional harmonic oscillator potential that does not seem to have been
hitherto observed.

The corresponding plethysm equivalence noted in (17) is less applicable since forN

spin 1
2 identical fermions the Pauli exclusion principle excludes spin states involving irreps

of S(N) involving partitions into more than two parts. In the case of nucleons where spin
and isospin are considered irreps ofS(N) involving partitions into up to four parts arise
and some application is possible but not in the form found so directly for two particles.

9. Three-particle states

There is no difficulty, in principle, in determining the states forN -particles in an isotropic
three-dimensional harmonic oscillator. The case of three particles suffices to illustrate the
general procedure. For three particles in an isotropic three-dimensional harmonic oscillator
potential the dynamical group isMp(18) whose fundamental irrep̃1 decomposes under
restriction toSp(18, R) as

1̃ → 〈 1
2(0)〉 + 〈 1

2(1)〉. (39)

Then underSp(18, R) → Sp(6, R) × O(3)

〈 1
2(0)〉 → 〈s1; (0)〉[0] +〈s1; (12)〉[1]# +〈s1; (2)〉[2]

+〈s1; (31)〉[3]# +〈s1; (4)〉[4] +〈s1; (51)〉[5]#
+〈s1; (6)〉[6] +〈s1; (71)〉[7]# +〈s1; (8)〉[8]
+〈s1; (91)〉[9]# +〈s1; (10)〉[10]

〈 1
2(1)〉 → 〈s1; (1)〉[1] +〈s1; (13)〉[0]# +〈s1; (21)〉[2]#

+〈s1; (3)〉[3] +〈s1; (41)〉[4]# +〈s1; (5)〉[5]
+〈s1; (61)〉[6]# +〈s1; (7)〉[7] +〈s1; (81)〉[8]#
+〈s1; (9)〉[9] +〈s1; (101)〉[10]#.

(40)

The spins associated with these representations can be found from a knowledge of the
O(3) → S(3) branching rules. Note that to obtain the branching rule for [n]# one simply
replaces theS(3) irreps by their conjugates.

The terms associated with the{3} irrep of S(3) are spurious while those with{21} and
{13} correspond to states with spinS = 1

2 and 3
2 respectively.

The three-particle states can be equivalently found from the use of theSp(6, R)

plethysms. Theeven-parity states must arise from

(S = 1
2)〈 1

2(0)〉 ⊗ {21} + 〈 1
2(1)〉 ⊗ {2}〈 1

2(0)〉 + 〈 1
2(1)〉 ⊗ {12}〈 1

2(0)〉 (41)

(S = 3
2)〈 1

2(0)〉 ⊗ {13} + 〈 1
2(1)〉 ⊗ {12}〈 1

2(0)〉 (42)
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while for theodd-parity states they arise from

(S = 1
2)〈 1

2(1)〉 ⊗ {21} + 〈 1
2(0)〉 ⊗ {2}〈 1

2(1)〉 + 〈 1
2(1)〉〈 1

2(0)〉 ⊗ {12} (43)

(S = 3
2)〈 1

2(1)〉 ⊗ {13} + 〈 1
2(0) ⊗ {12}〈 1

2(1)〉. (44)

To weight 10 we obtain the following even-parity states

(S = 1
2) 〈s1; (12)〉 +2〈s1; (2)〉 +2〈s1; (31)〉 +3〈s1; (4)〉

+4〈s1; (51)〉 +4〈s1; (6)〉 +5〈s1; (71)〉 +6〈s1; (8)〉
+6〈s1; (91)〉 +7〈s1; (10)〉

(S = 3
2) 〈s1; (12)〉 +2〈s1; (31)〉 +〈s1; (4)〉 +2〈s1; (51)〉

+2〈s1; (6)〉 +3〈s1; (71)〉 +2〈s1; (8)〉 +4〈s1; (91)〉
+3〈s1; (10)〉

while for the odd-parity states we obtain

(S = 1
2) 〈s1; (1)〉 +2〈s1; (21)〉 +2〈s1; (3)〉 +3〈s1; (41)〉

+4〈s1; (5)〉 +4〈s1; (61)〉 +5〈s1; (7)〉 +6〈s1; (81)〉
+6〈s1; (9)〉

(S = 3
2) 〈s1; (13)〉 +〈s1; (21)〉 +〈s1; (3)〉 +2〈s1; (41)〉

+〈s1; (5)〉 +3〈s1; (61)〉 +2〈s1; (7)〉 +3〈s1; (81)〉
+3〈s1; (9)〉.

10. Lowest energy states for non-interacting particles

In the case ofN non-interacting particles in a harmonic-oscillator potential the energy of a
given state is simply the sum of the one-particle energies and hence the lowest energy state
associated with a givenSp(6, R) multiplet 〈κ(λ)〉 is, relative to the ground-state energy,

wλh̄ω (45)

where ω is the oscillator angular frequency andwλ is the weight of the partition(λ).
Representations ofSp(6, R) having different partitions but of the same weight will have
the same zero-order energy as given in (45).

For three-particles we have, to weight 6, theU(3) states with spinS = 1
2 are illustrated

in figure 1 and those forS = 3
2 in figure 2.

The U(3) states of weightw for N -particles may be determined as follows
(1) Partition the integerw into N parts allowing zero parts if necessary.
(2) Even-weight partitions involve even-parity states otherwise odd-parity states.
(3) Replace each part,i, by {i} which then labels theU(3) irrep for a single particle in

the ith harmonic oscillator orbital. A given orbitali can accommodate up to 4i +2 particles
with spin 1

2.
(4) For a given partition containingk distinct non-repeating parts form theSU(2)×U(3)

Kronecker product

{ 1
2} × {i1}.{ 1

2} × {i2} · · · .{ 1
2} × {ik} (46)

to give a series ofSU(2)S × U(3) multiplets.
(5) If the partsi are repeated with a multiplicitym then evaluate the plethysm

{ 1
2}{i}) ⊗ {1m} =

{m

2

}
{i} ⊗ {1m} if m > 2

= {1}({i} ⊗ {12} + {0}({i} ⊗ {2} if m = 2 (47)
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(a) (b) (c) (d ) (e) ( f )

Figure 1. U(3) multiplets to weight 6 for spinS = 1
2 three-particle harmonic oscillator

states. Each column involves the decompositionSp(6, R) → U(3) for a set of Sp(6, R)

irreducible representations. Specifically, (a) 〈s1; (1)〉+〈s1; (12)〉, (b) 2〈s1; (2)〉+2〈s1; (21)〉, (c)
2〈s1; (3)〉+2〈s1; (31)〉, (d) 2〈s1; (41)〉+3〈s1; (41)〉, (e) 4〈s1; (5)〉+4〈s1; (51)〉, (f ) 4〈s1; (6)〉.

(a) (b) (c) (d ) (e)

Figure 2. U(3) multiplets to weight 6 for spinS = 3
2 three-particle harmonic oscillator

states. Each column involves the decompositionSp(6, R) → U(3) for a set of Sp(6, R)

irreducible representations. Specifically, (a) 〈s1; (12)〉 + 〈s1; (13)〉, (b) 〈s1; (21)〉 + 2〈s1; (31)〉,
(c) 〈s1; (3)〉 + 〈s1; (4)〉, (d) 2〈s1; (41)〉 + 2〈s1; (51)〉, (e) 〈s1; (5)〉 + 2〈s1; (6)〉.

For N = 3 we have for weight 4 the four partitions

4 + 0 + 0 3+ 1 + 0 2+ 2 + 0 2+ 1 + 1. (48)
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Applying the above algorithm we find, for the first partition, aU(3) multiplet {4} with
S = 1

2. The second partition gives twoU(3) multiplets, {4} + {31} with spinsS = 1
2 and

S = 3
2. The third partition yields theU(3) multiplet {31} with S = 3

2 and theU(3) multiplets
{4} + {31} + {22} with spin S = 1

2. The fourth partition yields the twoU(3) multiplets
{31} + {212} with spinS = 3

2 and the threeU(3) multiplets{4} + 2{31} + {22} + {212} with
spin S = 1

2. Thus for spinS = 3
2 we obtain theU(3) multiplets {4} + 3{31} + {212} and

for spin S = 1
2 the U(3) multiplets 5{4} + 4{31} + 2{22} + {212} in agreement with those

found in figures 1 and 2 using the groupSp(6, R) ⇒ U(3) decompositions.

11. Concluding remarks

Some basic methods of computing plethysms for the non-compact groupSp(2n, R) have
been outlined. A novel, and unexpected, feature of this work has been the recognition of a
number of new identities concerning plethysms of the fundamental irreps ofSp(2n, R) and
consequential identities involving plethysms of certain infinite series ofS-functions. These
identities give rise to an apparently hitherto unrecognized property of two-particle states in
an isotropic harmonic potential.

An initially surprising feature is the essentiallyn-independence of theSp(2n, R)

plethysms. These stabilize for sufficiently largen and results for smallern follow by
rejection from the stabilized result of allSp(2n, R) irreps that do not satisfy (4) for the
smaller value ofn. Increasingn beyond its stabilized value involves considerably more
computation but no new types ofSp(2n, R) irreps.

Much of the preceding work is relevant to symplectic models of nuclei and mesoscopic
systems such as quantum dots. It should be possible to start to consider the properties
of model Hamiltonians constructed from the group generators. The first step is the
determination of the states of the non-interacting particles which has been one of the
objectives of this paper.
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